Estimation of Missing Rainfall Data in Northeast Region of Thailand Using Spatial Interpolation Methods
نویسندگان
چکیده
Ground-based rainfall observations are the primary sources of precipitation data used in most developing countries. However, those observations are frequently damaged or incomplete, thus missing data is always a problem. This comparison study examines a number of spatial interpolation methods used to estimate missing monthly rainfall data in the northeast region of Thailand. The comparison was grouped into global and local methods. In global methods, trend surface analysis was compared to back-propagation neural network. The results showed that back-propagation neural network is more capable of tolerating to richnoised data. However, such neural network must be carefully used because it could provide unreliable results at the boundary area. In local methods, common used kriging methods were compared and it was found that the characteristics of the datasets have significant effects on the estimation performance. This study recommends using the kurtosis value of observations’ histogram and nugget to sill ratio of fitted semivariogram models as a guideline to select between ordinary kriging and universal kriging methods. Since the study area is a large plateau, in which there is low correlation between rainfall and altitude, ordinary cokriging method cannot make use of the altitude as a supplementary feature to improve the estimation performance.
منابع مشابه
The Effect of Station Density and Regional Division on Spatial Distribution of Daily Rainfall
Rainfall is one of the most important climatic variables in the hydrology cycle. In flood estimation as well as environmental pollution studies in medium to large watersheds not only mus temporal pattern of rainfall t be known, but also the knowledge of its spatial distribution is required. Estimation of daily rainfall distribution without comparison and selection of suitable methods may lead...
متن کاملThe Effect of Station Density and Regional Division on Spatial Distribution of Daily Rainfall
Rainfall is one of the most important climatic variables in the hydrology cycle. In flood estimation as well as environmental pollution studies in medium to large watersheds not only mus temporal pattern of rainfall t be known, but also the knowledge of its spatial distribution is required. Estimation of daily rainfall distribution without comparison and selection of 
suitable methods may le...
متن کاملبررسی تغییرات مکانی شاخص تمرکز بارندگی و فرسایندگی باران در استان خوزستان
Rainfall variability and its impact on water resources are important climatic issues. Intra-annual variations in rainfall are characterized as precipitation concentration index (PCI). Another feature that directly correlates with the concentration of precipitation is the rain erosivity (Modified Fournier Index MFI). The aim of this study is to investigate the PCI and MFI indices and map their s...
متن کاملEstimation of Missing Precipitation Records Using Modular Artificial Neural Networks
Estimation of missing precipitation records is one of the important tasks in hydrological study. The completeness of precipitation data leads to more accurate results from the hydrological models. This study proposes the use of modular artificial neural networks to estimate missing monthly rainfall data in the northeast region of Thailand. The simultaneous rainfall data from neighboring control...
متن کاملPerformance evaluation of different estimation methods for missing rainfall data
There are numerous methods to estimate missing values of which some are used depending on the data type and regional climatic characteristics. In this research, part of the monthly precipitation data in Sarab synoptic station, east Azerbaijan province, Iran was randomly considered missing values. In order to study the effectiveness of various methods to estimate missing data, by seven classic s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Austr. J. Intelligent Information Processing Systems
دوره 13 شماره
صفحات -
تاریخ انتشار 2011